Рассчитать высоту треугольника со сторонами 146, 105 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 105 + 95}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-146)(173-105)(173-95)}}{105}\normalsize = 94.8085245}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-146)(173-105)(173-95)}}{146}\normalsize = 68.1842129}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-146)(173-105)(173-95)}}{95}\normalsize = 104.788369}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 105 и 95 равна 94.8085245
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 105 и 95 равна 68.1842129
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 105 и 95 равна 104.788369
Ссылка на результат
?n1=146&n2=105&n3=95
Найти высоту треугольника со сторонами 137, 135 и 22
Найти высоту треугольника со сторонами 95, 80 и 26
Найти высоту треугольника со сторонами 140, 137 и 114
Найти высоту треугольника со сторонами 150, 118 и 44
Найти высоту треугольника со сторонами 149, 149 и 146
Найти высоту треугольника со сторонами 145, 91 и 57
Найти высоту треугольника со сторонами 95, 80 и 26
Найти высоту треугольника со сторонами 140, 137 и 114
Найти высоту треугольника со сторонами 150, 118 и 44
Найти высоту треугольника со сторонами 149, 149 и 146
Найти высоту треугольника со сторонами 145, 91 и 57