Рассчитать высоту треугольника со сторонами 146, 106 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 106 + 63}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-146)(157.5-106)(157.5-63)}}{106}\normalsize = 56.0186771}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-146)(157.5-106)(157.5-63)}}{146}\normalsize = 40.6710943}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-146)(157.5-106)(157.5-63)}}{63}\normalsize = 94.2536471}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 106 и 63 равна 56.0186771
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 106 и 63 равна 40.6710943
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 106 и 63 равна 94.2536471
Ссылка на результат
?n1=146&n2=106&n3=63
Найти высоту треугольника со сторонами 84, 78 и 63
Найти высоту треугольника со сторонами 113, 110 и 24
Найти высоту треугольника со сторонами 100, 85 и 38
Найти высоту треугольника со сторонами 129, 127 и 30
Найти высоту треугольника со сторонами 150, 144 и 48
Найти высоту треугольника со сторонами 143, 137 и 22
Найти высоту треугольника со сторонами 113, 110 и 24
Найти высоту треугольника со сторонами 100, 85 и 38
Найти высоту треугольника со сторонами 129, 127 и 30
Найти высоту треугольника со сторонами 150, 144 и 48
Найти высоту треугольника со сторонами 143, 137 и 22