Рассчитать высоту треугольника со сторонами 146, 110 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 110 + 39}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-110)(147.5-39)}}{110}\normalsize = 17.2508085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-110)(147.5-39)}}{146}\normalsize = 12.9971845}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-110)(147.5-39)}}{39}\normalsize = 48.6561264}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 110 и 39 равна 17.2508085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 110 и 39 равна 12.9971845
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 110 и 39 равна 48.6561264
Ссылка на результат
?n1=146&n2=110&n3=39
Найти высоту треугольника со сторонами 137, 85 и 56
Найти высоту треугольника со сторонами 118, 105 и 99
Найти высоту треугольника со сторонами 113, 98 и 39
Найти высоту треугольника со сторонами 110, 88 и 86
Найти высоту треугольника со сторонами 121, 120 и 42
Найти высоту треугольника со сторонами 136, 91 и 53
Найти высоту треугольника со сторонами 118, 105 и 99
Найти высоту треугольника со сторонами 113, 98 и 39
Найти высоту треугольника со сторонами 110, 88 и 86
Найти высоту треугольника со сторонами 121, 120 и 42
Найти высоту треугольника со сторонами 136, 91 и 53