Рассчитать высоту треугольника со сторонами 146, 113 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 113 + 90}{2}} \normalsize = 174.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174.5(174.5-146)(174.5-113)(174.5-90)}}{113}\normalsize = 89.9782641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174.5(174.5-146)(174.5-113)(174.5-90)}}{146}\normalsize = 69.6407112}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174.5(174.5-146)(174.5-113)(174.5-90)}}{90}\normalsize = 112.972709}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 113 и 90 равна 89.9782641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 113 и 90 равна 69.6407112
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 113 и 90 равна 112.972709
Ссылка на результат
?n1=146&n2=113&n3=90
Найти высоту треугольника со сторонами 68, 64 и 16
Найти высоту треугольника со сторонами 138, 118 и 32
Найти высоту треугольника со сторонами 149, 136 и 119
Найти высоту треугольника со сторонами 102, 86 и 26
Найти высоту треугольника со сторонами 116, 83 и 45
Найти высоту треугольника со сторонами 41, 33 и 10
Найти высоту треугольника со сторонами 138, 118 и 32
Найти высоту треугольника со сторонами 149, 136 и 119
Найти высоту треугольника со сторонами 102, 86 и 26
Найти высоту треугольника со сторонами 116, 83 и 45
Найти высоту треугольника со сторонами 41, 33 и 10