Рассчитать высоту треугольника со сторонами 146, 115 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 115 + 69}{2}} \normalsize = 165}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165(165-146)(165-115)(165-69)}}{115}\normalsize = 67.463916}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165(165-146)(165-115)(165-69)}}{146}\normalsize = 53.1393859}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165(165-146)(165-115)(165-69)}}{69}\normalsize = 112.43986}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 115 и 69 равна 67.463916
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 115 и 69 равна 53.1393859
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 115 и 69 равна 112.43986
Ссылка на результат
?n1=146&n2=115&n3=69
Найти высоту треугольника со сторонами 120, 91 и 68
Найти высоту треугольника со сторонами 149, 146 и 31
Найти высоту треугольника со сторонами 141, 133 и 51
Найти высоту треугольника со сторонами 89, 89 и 83
Найти высоту треугольника со сторонами 140, 138 и 114
Найти высоту треугольника со сторонами 144, 103 и 78
Найти высоту треугольника со сторонами 149, 146 и 31
Найти высоту треугольника со сторонами 141, 133 и 51
Найти высоту треугольника со сторонами 89, 89 и 83
Найти высоту треугольника со сторонами 140, 138 и 114
Найти высоту треугольника со сторонами 144, 103 и 78