Рассчитать высоту треугольника со сторонами 146, 116 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 116 + 36}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-146)(149-116)(149-36)}}{116}\normalsize = 22.259836}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-146)(149-116)(149-36)}}{146}\normalsize = 17.6858971}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-146)(149-116)(149-36)}}{36}\normalsize = 71.7261381}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 116 и 36 равна 22.259836
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 116 и 36 равна 17.6858971
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 116 и 36 равна 71.7261381
Ссылка на результат
?n1=146&n2=116&n3=36
Найти высоту треугольника со сторонами 108, 107 и 101
Найти высоту треугольника со сторонами 118, 103 и 92
Найти высоту треугольника со сторонами 121, 95 и 33
Найти высоту треугольника со сторонами 103, 96 и 62
Найти высоту треугольника со сторонами 132, 127 и 84
Найти высоту треугольника со сторонами 73, 56 и 20
Найти высоту треугольника со сторонами 118, 103 и 92
Найти высоту треугольника со сторонами 121, 95 и 33
Найти высоту треугольника со сторонами 103, 96 и 62
Найти высоту треугольника со сторонами 132, 127 и 84
Найти высоту треугольника со сторонами 73, 56 и 20