Рассчитать высоту треугольника со сторонами 146, 116 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 116 + 51}{2}} \normalsize = 156.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156.5(156.5-146)(156.5-116)(156.5-51)}}{116}\normalsize = 45.6854144}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156.5(156.5-146)(156.5-116)(156.5-51)}}{146}\normalsize = 36.2980005}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156.5(156.5-146)(156.5-116)(156.5-51)}}{51}\normalsize = 103.911923}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 116 и 51 равна 45.6854144
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 116 и 51 равна 36.2980005
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 116 и 51 равна 103.911923
Ссылка на результат
?n1=146&n2=116&n3=51
Найти высоту треугольника со сторонами 104, 86 и 67
Найти высоту треугольника со сторонами 147, 106 и 101
Найти высоту треугольника со сторонами 62, 48 и 41
Найти высоту треугольника со сторонами 53, 49 и 10
Найти высоту треугольника со сторонами 148, 148 и 103
Найти высоту треугольника со сторонами 132, 91 и 71
Найти высоту треугольника со сторонами 147, 106 и 101
Найти высоту треугольника со сторонами 62, 48 и 41
Найти высоту треугольника со сторонами 53, 49 и 10
Найти высоту треугольника со сторонами 148, 148 и 103
Найти высоту треугольника со сторонами 132, 91 и 71