Рассчитать высоту треугольника со сторонами 146, 122 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 122 + 57}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-146)(162.5-122)(162.5-57)}}{122}\normalsize = 55.4871682}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-146)(162.5-122)(162.5-57)}}{146}\normalsize = 46.3659899}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-146)(162.5-122)(162.5-57)}}{57}\normalsize = 118.762009}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 122 и 57 равна 55.4871682
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 122 и 57 равна 46.3659899
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 122 и 57 равна 118.762009
Ссылка на результат
?n1=146&n2=122&n3=57
Найти высоту треугольника со сторонами 119, 119 и 56
Найти высоту треугольника со сторонами 116, 69 и 50
Найти высоту треугольника со сторонами 145, 120 и 57
Найти высоту треугольника со сторонами 81, 78 и 28
Найти высоту треугольника со сторонами 132, 108 и 67
Найти высоту треугольника со сторонами 141, 121 и 21
Найти высоту треугольника со сторонами 116, 69 и 50
Найти высоту треугольника со сторонами 145, 120 и 57
Найти высоту треугольника со сторонами 81, 78 и 28
Найти высоту треугольника со сторонами 132, 108 и 67
Найти высоту треугольника со сторонами 141, 121 и 21