Рассчитать высоту треугольника со сторонами 146, 123 и 116
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 123 + 116}{2}} \normalsize = 192.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192.5(192.5-146)(192.5-123)(192.5-116)}}{123}\normalsize = 112.173391}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192.5(192.5-146)(192.5-123)(192.5-116)}}{146}\normalsize = 94.5022401}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192.5(192.5-146)(192.5-123)(192.5-116)}}{116}\normalsize = 118.942475}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 123 и 116 равна 112.173391
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 123 и 116 равна 94.5022401
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 123 и 116 равна 118.942475
Ссылка на результат
?n1=146&n2=123&n3=116
Найти высоту треугольника со сторонами 115, 106 и 37
Найти высоту треугольника со сторонами 137, 121 и 83
Найти высоту треугольника со сторонами 76, 69 и 69
Найти высоту треугольника со сторонами 52, 49 и 49
Найти высоту треугольника со сторонами 136, 124 и 17
Найти высоту треугольника со сторонами 97, 91 и 35
Найти высоту треугольника со сторонами 137, 121 и 83
Найти высоту треугольника со сторонами 76, 69 и 69
Найти высоту треугольника со сторонами 52, 49 и 49
Найти высоту треугольника со сторонами 136, 124 и 17
Найти высоту треугольника со сторонами 97, 91 и 35