Рассчитать высоту треугольника со сторонами 146, 125 и 100

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 125 + 100}{2}} \normalsize = 185.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{185.5(185.5-146)(185.5-125)(185.5-100)}}{125}\normalsize = 98.5034025}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{185.5(185.5-146)(185.5-125)(185.5-100)}}{146}\normalsize = 84.3351049}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{185.5(185.5-146)(185.5-125)(185.5-100)}}{100}\normalsize = 123.129253}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 125 и 100 равна 98.5034025
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 125 и 100 равна 84.3351049
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 125 и 100 равна 123.129253
Ссылка на результат
?n1=146&n2=125&n3=100