Рассчитать высоту треугольника со сторонами 146, 128 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 128 + 33}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-146)(153.5-128)(153.5-33)}}{128}\normalsize = 29.3878938}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-146)(153.5-128)(153.5-33)}}{146}\normalsize = 25.7647288}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-146)(153.5-128)(153.5-33)}}{33}\normalsize = 113.989406}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 128 и 33 равна 29.3878938
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 128 и 33 равна 25.7647288
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 128 и 33 равна 113.989406
Ссылка на результат
?n1=146&n2=128&n3=33
Найти высоту треугольника со сторонами 142, 135 и 105
Найти высоту треугольника со сторонами 116, 112 и 106
Найти высоту треугольника со сторонами 92, 83 и 80
Найти высоту треугольника со сторонами 125, 101 и 29
Найти высоту треугольника со сторонами 88, 64 и 52
Найти высоту треугольника со сторонами 134, 101 и 40
Найти высоту треугольника со сторонами 116, 112 и 106
Найти высоту треугольника со сторонами 92, 83 и 80
Найти высоту треугольника со сторонами 125, 101 и 29
Найти высоту треугольника со сторонами 88, 64 и 52
Найти высоту треугольника со сторонами 134, 101 и 40