Рассчитать высоту треугольника со сторонами 146, 130 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 130 + 27}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-146)(151.5-130)(151.5-27)}}{130}\normalsize = 22.9762004}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-146)(151.5-130)(151.5-27)}}{146}\normalsize = 20.4582606}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-146)(151.5-130)(151.5-27)}}{27}\normalsize = 110.62615}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 130 и 27 равна 22.9762004
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 130 и 27 равна 20.4582606
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 130 и 27 равна 110.62615
Ссылка на результат
?n1=146&n2=130&n3=27
Найти высоту треугольника со сторонами 137, 95 и 87
Найти высоту треугольника со сторонами 68, 66 и 33
Найти высоту треугольника со сторонами 144, 117 и 94
Найти высоту треугольника со сторонами 128, 124 и 69
Найти высоту треугольника со сторонами 66, 40 и 32
Найти высоту треугольника со сторонами 108, 79 и 38
Найти высоту треугольника со сторонами 68, 66 и 33
Найти высоту треугольника со сторонами 144, 117 и 94
Найти высоту треугольника со сторонами 128, 124 и 69
Найти высоту треугольника со сторонами 66, 40 и 32
Найти высоту треугольника со сторонами 108, 79 и 38