Рассчитать высоту треугольника со сторонами 146, 130 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 130 + 50}{2}} \normalsize = 163}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163(163-146)(163-130)(163-50)}}{130}\normalsize = 49.4539628}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163(163-146)(163-130)(163-50)}}{146}\normalsize = 44.0343504}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163(163-146)(163-130)(163-50)}}{50}\normalsize = 128.580303}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 130 и 50 равна 49.4539628
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 130 и 50 равна 44.0343504
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 130 и 50 равна 128.580303
Ссылка на результат
?n1=146&n2=130&n3=50
Найти высоту треугольника со сторонами 147, 82 и 72
Найти высоту треугольника со сторонами 34, 22 и 19
Найти высоту треугольника со сторонами 97, 71 и 60
Найти высоту треугольника со сторонами 135, 110 и 77
Найти высоту треугольника со сторонами 123, 94 и 38
Найти высоту треугольника со сторонами 57, 52 и 38
Найти высоту треугольника со сторонами 34, 22 и 19
Найти высоту треугольника со сторонами 97, 71 и 60
Найти высоту треугольника со сторонами 135, 110 и 77
Найти высоту треугольника со сторонами 123, 94 и 38
Найти высоту треугольника со сторонами 57, 52 и 38