Рассчитать высоту треугольника со сторонами 146, 135 и 105
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 135 + 105}{2}} \normalsize = 193}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{193(193-146)(193-135)(193-105)}}{135}\normalsize = 100.80432}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{193(193-146)(193-135)(193-105)}}{146}\normalsize = 93.2094738}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{193(193-146)(193-135)(193-105)}}{105}\normalsize = 129.605554}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 135 и 105 равна 100.80432
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 135 и 105 равна 93.2094738
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 135 и 105 равна 129.605554
Ссылка на результат
?n1=146&n2=135&n3=105
Найти высоту треугольника со сторонами 130, 97 и 82
Найти высоту треугольника со сторонами 53, 44 и 13
Найти высоту треугольника со сторонами 121, 114 и 56
Найти высоту треугольника со сторонами 150, 141 и 101
Найти высоту треугольника со сторонами 130, 123 и 120
Найти высоту треугольника со сторонами 148, 99 и 80
Найти высоту треугольника со сторонами 53, 44 и 13
Найти высоту треугольника со сторонами 121, 114 и 56
Найти высоту треугольника со сторонами 150, 141 и 101
Найти высоту треугольника со сторонами 130, 123 и 120
Найти высоту треугольника со сторонами 148, 99 и 80