Рассчитать высоту треугольника со сторонами 146, 137 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 137 + 71}{2}} \normalsize = 177}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{177(177-146)(177-137)(177-71)}}{137}\normalsize = 70.4141331}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{177(177-146)(177-137)(177-71)}}{146}\normalsize = 66.0735359}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{177(177-146)(177-137)(177-71)}}{71}\normalsize = 135.869524}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 137 и 71 равна 70.4141331
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 137 и 71 равна 66.0735359
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 137 и 71 равна 135.869524
Ссылка на результат
?n1=146&n2=137&n3=71
Найти высоту треугольника со сторонами 144, 84 и 65
Найти высоту треугольника со сторонами 88, 73 и 46
Найти высоту треугольника со сторонами 129, 128 и 41
Найти высоту треугольника со сторонами 146, 97 и 56
Найти высоту треугольника со сторонами 61, 59 и 57
Найти высоту треугольника со сторонами 149, 141 и 33
Найти высоту треугольника со сторонами 88, 73 и 46
Найти высоту треугольника со сторонами 129, 128 и 41
Найти высоту треугольника со сторонами 146, 97 и 56
Найти высоту треугольника со сторонами 61, 59 и 57
Найти высоту треугольника со сторонами 149, 141 и 33