Рассчитать высоту треугольника со сторонами 146, 139 и 132
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 139 + 132}{2}} \normalsize = 208.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{208.5(208.5-146)(208.5-139)(208.5-132)}}{139}\normalsize = 119.765396}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{208.5(208.5-146)(208.5-139)(208.5-132)}}{146}\normalsize = 114.023219}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{208.5(208.5-146)(208.5-139)(208.5-132)}}{132}\normalsize = 126.116591}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 139 и 132 равна 119.765396
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 139 и 132 равна 114.023219
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 139 и 132 равна 126.116591
Ссылка на результат
?n1=146&n2=139&n3=132
Найти высоту треугольника со сторонами 68, 64 и 34
Найти высоту треугольника со сторонами 131, 129 и 3
Найти высоту треугольника со сторонами 121, 112 и 60
Найти высоту треугольника со сторонами 73, 66 и 60
Найти высоту треугольника со сторонами 46, 29 и 19
Найти высоту треугольника со сторонами 125, 74 и 73
Найти высоту треугольника со сторонами 131, 129 и 3
Найти высоту треугольника со сторонами 121, 112 и 60
Найти высоту треугольника со сторонами 73, 66 и 60
Найти высоту треугольника со сторонами 46, 29 и 19
Найти высоту треугольника со сторонами 125, 74 и 73