Рассчитать высоту треугольника со сторонами 146, 140 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 140 + 16}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-146)(151-140)(151-16)}}{140}\normalsize = 15.1265073}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-146)(151-140)(151-16)}}{146}\normalsize = 14.5048701}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-146)(151-140)(151-16)}}{16}\normalsize = 132.356939}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 140 и 16 равна 15.1265073
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 140 и 16 равна 14.5048701
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 140 и 16 равна 132.356939
Ссылка на результат
?n1=146&n2=140&n3=16
Найти высоту треугольника со сторонами 123, 102 и 83
Найти высоту треугольника со сторонами 120, 119 и 96
Найти высоту треугольника со сторонами 112, 60 и 59
Найти высоту треугольника со сторонами 119, 99 и 88
Найти высоту треугольника со сторонами 107, 87 и 66
Найти высоту треугольника со сторонами 126, 120 и 46
Найти высоту треугольника со сторонами 120, 119 и 96
Найти высоту треугольника со сторонами 112, 60 и 59
Найти высоту треугольника со сторонами 119, 99 и 88
Найти высоту треугольника со сторонами 107, 87 и 66
Найти высоту треугольника со сторонами 126, 120 и 46