Рассчитать высоту треугольника со сторонами 146, 140 и 42

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 140 + 42}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-146)(164-140)(164-42)}}{140}\normalsize = 41.9996501}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-146)(164-140)(164-42)}}{146}\normalsize = 40.2736371}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-146)(164-140)(164-42)}}{42}\normalsize = 139.998834}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 140 и 42 равна 41.9996501
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 140 и 42 равна 40.2736371
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 140 и 42 равна 139.998834
Ссылка на результат
?n1=146&n2=140&n3=42