Рассчитать высоту треугольника со сторонами 146, 141 и 123
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 141 + 123}{2}} \normalsize = 205}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{205(205-146)(205-141)(205-123)}}{141}\normalsize = 113.008402}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{205(205-146)(205-141)(205-123)}}{146}\normalsize = 109.138251}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{205(205-146)(205-141)(205-123)}}{123}\normalsize = 129.546217}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 141 и 123 равна 113.008402
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 141 и 123 равна 109.138251
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 141 и 123 равна 129.546217
Ссылка на результат
?n1=146&n2=141&n3=123
Найти высоту треугольника со сторонами 40, 35 и 11
Найти высоту треугольника со сторонами 122, 104 и 89
Найти высоту треугольника со сторонами 128, 125 и 46
Найти высоту треугольника со сторонами 130, 88 и 80
Найти высоту треугольника со сторонами 102, 101 и 22
Найти высоту треугольника со сторонами 116, 84 и 81
Найти высоту треугольника со сторонами 122, 104 и 89
Найти высоту треугольника со сторонами 128, 125 и 46
Найти высоту треугольника со сторонами 130, 88 и 80
Найти высоту треугольника со сторонами 102, 101 и 22
Найти высоту треугольника со сторонами 116, 84 и 81