Рассчитать высоту треугольника со сторонами 146, 142 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 142 + 40}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-146)(164-142)(164-40)}}{142}\normalsize = 39.968883}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-146)(164-142)(164-40)}}{146}\normalsize = 38.8738451}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-146)(164-142)(164-40)}}{40}\normalsize = 141.889534}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 142 и 40 равна 39.968883
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 142 и 40 равна 38.8738451
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 142 и 40 равна 141.889534
Ссылка на результат
?n1=146&n2=142&n3=40
Найти высоту треугольника со сторонами 150, 84 и 81
Найти высоту треугольника со сторонами 96, 94 и 68
Найти высоту треугольника со сторонами 131, 122 и 79
Найти высоту треугольника со сторонами 106, 103 и 49
Найти высоту треугольника со сторонами 130, 120 и 88
Найти высоту треугольника со сторонами 135, 107 и 97
Найти высоту треугольника со сторонами 96, 94 и 68
Найти высоту треугольника со сторонами 131, 122 и 79
Найти высоту треугольника со сторонами 106, 103 и 49
Найти высоту треугольника со сторонами 130, 120 и 88
Найти высоту треугольника со сторонами 135, 107 и 97