Рассчитать высоту треугольника со сторонами 146, 143 и 11

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 143 + 11}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-146)(150-143)(150-11)}}{143}\normalsize = 10.6862666}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-146)(150-143)(150-11)}}{146}\normalsize = 10.4666858}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-146)(150-143)(150-11)}}{11}\normalsize = 138.921465}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 143 и 11 равна 10.6862666
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 143 и 11 равна 10.4666858
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 143 и 11 равна 138.921465
Ссылка на результат
?n1=146&n2=143&n3=11