Рассчитать высоту треугольника со сторонами 146, 143 и 131
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 143 + 131}{2}} \normalsize = 210}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{210(210-146)(210-143)(210-131)}}{143}\normalsize = 117.962655}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{210(210-146)(210-143)(210-131)}}{146}\normalsize = 115.538765}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{210(210-146)(210-143)(210-131)}}{131}\normalsize = 128.768395}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 143 и 131 равна 117.962655
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 143 и 131 равна 115.538765
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 143 и 131 равна 128.768395
Ссылка на результат
?n1=146&n2=143&n3=131
Найти высоту треугольника со сторонами 120, 69 и 65
Найти высоту треугольника со сторонами 126, 113 и 102
Найти высоту треугольника со сторонами 131, 120 и 80
Найти высоту треугольника со сторонами 99, 74 и 54
Найти высоту треугольника со сторонами 101, 68 и 34
Найти высоту треугольника со сторонами 140, 139 и 90
Найти высоту треугольника со сторонами 126, 113 и 102
Найти высоту треугольника со сторонами 131, 120 и 80
Найти высоту треугольника со сторонами 99, 74 и 54
Найти высоту треугольника со сторонами 101, 68 и 34
Найти высоту треугольника со сторонами 140, 139 и 90