Рассчитать высоту треугольника со сторонами 146, 143 и 134
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 143 + 134}{2}} \normalsize = 211.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{211.5(211.5-146)(211.5-143)(211.5-134)}}{143}\normalsize = 119.940521}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{211.5(211.5-146)(211.5-143)(211.5-134)}}{146}\normalsize = 117.47599}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{211.5(211.5-146)(211.5-143)(211.5-134)}}{134}\normalsize = 127.996228}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 143 и 134 равна 119.940521
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 143 и 134 равна 117.47599
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 143 и 134 равна 127.996228
Ссылка на результат
?n1=146&n2=143&n3=134
Найти высоту треугольника со сторонами 112, 111 и 37
Найти высоту треугольника со сторонами 141, 87 и 61
Найти высоту треугольника со сторонами 95, 91 и 64
Найти высоту треугольника со сторонами 121, 90 и 49
Найти высоту треугольника со сторонами 51, 45 и 33
Найти высоту треугольника со сторонами 75, 75 и 65
Найти высоту треугольника со сторонами 141, 87 и 61
Найти высоту треугольника со сторонами 95, 91 и 64
Найти высоту треугольника со сторонами 121, 90 и 49
Найти высоту треугольника со сторонами 51, 45 и 33
Найти высоту треугольника со сторонами 75, 75 и 65