Рассчитать высоту треугольника со сторонами 146, 144 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 144 + 17}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-146)(153.5-144)(153.5-17)}}{144}\normalsize = 16.9699457}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-146)(153.5-144)(153.5-17)}}{146}\normalsize = 16.7374807}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-146)(153.5-144)(153.5-17)}}{17}\normalsize = 143.745423}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 144 и 17 равна 16.9699457
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 144 и 17 равна 16.7374807
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 144 и 17 равна 143.745423
Ссылка на результат
?n1=146&n2=144&n3=17
Найти высоту треугольника со сторонами 81, 75 и 59
Найти высоту треугольника со сторонами 38, 37 и 19
Найти высоту треугольника со сторонами 110, 99 и 83
Найти высоту треугольника со сторонами 84, 78 и 12
Найти высоту треугольника со сторонами 49, 45 и 19
Найти высоту треугольника со сторонами 113, 112 и 70
Найти высоту треугольника со сторонами 38, 37 и 19
Найти высоту треугольника со сторонами 110, 99 и 83
Найти высоту треугольника со сторонами 84, 78 и 12
Найти высоту треугольника со сторонами 49, 45 и 19
Найти высоту треугольника со сторонами 113, 112 и 70