Рассчитать высоту треугольника со сторонами 146, 145 и 14

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 145 + 14}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-146)(152.5-145)(152.5-14)}}{145}\normalsize = 13.9961669}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-146)(152.5-145)(152.5-14)}}{146}\normalsize = 13.9003027}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-146)(152.5-145)(152.5-14)}}{14}\normalsize = 144.9603}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 145 и 14 равна 13.9961669
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 145 и 14 равна 13.9003027
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 145 и 14 равна 144.9603
Ссылка на результат
?n1=146&n2=145&n3=14