Рассчитать высоту треугольника со сторонами 146, 146 и 127
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 146 + 127}{2}} \normalsize = 209.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{209.5(209.5-146)(209.5-146)(209.5-127)}}{146}\normalsize = 114.358869}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{209.5(209.5-146)(209.5-146)(209.5-127)}}{146}\normalsize = 114.358869}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{209.5(209.5-146)(209.5-146)(209.5-127)}}{127}\normalsize = 131.467677}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 146 и 127 равна 114.358869
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 146 и 127 равна 114.358869
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 146 и 127 равна 131.467677
Ссылка на результат
?n1=146&n2=146&n3=127
Найти высоту треугольника со сторонами 93, 64 и 46
Найти высоту треугольника со сторонами 101, 93 и 35
Найти высоту треугольника со сторонами 122, 112 и 47
Найти высоту треугольника со сторонами 150, 145 и 128
Найти высоту треугольника со сторонами 63, 47 и 32
Найти высоту треугольника со сторонами 39, 39 и 14
Найти высоту треугольника со сторонами 101, 93 и 35
Найти высоту треугольника со сторонами 122, 112 и 47
Найти высоту треугольника со сторонами 150, 145 и 128
Найти высоту треугольника со сторонами 63, 47 и 32
Найти высоту треугольника со сторонами 39, 39 и 14