Рассчитать высоту треугольника со сторонами 146, 90 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 90 + 57}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-90)(146.5-57)}}{90}\normalsize = 13.5246814}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-90)(146.5-57)}}{146}\normalsize = 8.33713235}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-90)(146.5-57)}}{57}\normalsize = 21.3547601}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 90 и 57 равна 13.5246814
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 90 и 57 равна 8.33713235
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 90 и 57 равна 21.3547601
Ссылка на результат
?n1=146&n2=90&n3=57
Найти высоту треугольника со сторонами 91, 69 и 23
Найти высоту треугольника со сторонами 136, 136 и 135
Найти высоту треугольника со сторонами 137, 104 и 83
Найти высоту треугольника со сторонами 133, 107 и 63
Найти высоту треугольника со сторонами 105, 75 и 59
Найти высоту треугольника со сторонами 139, 113 и 33
Найти высоту треугольника со сторонами 136, 136 и 135
Найти высоту треугольника со сторонами 137, 104 и 83
Найти высоту треугольника со сторонами 133, 107 и 63
Найти высоту треугольника со сторонами 105, 75 и 59
Найти высоту треугольника со сторонами 139, 113 и 33