Рассчитать высоту треугольника со сторонами 146, 92 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 92 + 91}{2}} \normalsize = 164.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-92)(164.5-91)}}{92}\normalsize = 87.5434498}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-92)(164.5-91)}}{146}\normalsize = 55.1643656}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-92)(164.5-91)}}{91}\normalsize = 88.5054657}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 92 и 91 равна 87.5434498
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 92 и 91 равна 55.1643656
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 92 и 91 равна 88.5054657
Ссылка на результат
?n1=146&n2=92&n3=91
Найти высоту треугольника со сторонами 145, 144 и 126
Найти высоту треугольника со сторонами 132, 109 и 83
Найти высоту треугольника со сторонами 144, 79 и 76
Найти высоту треугольника со сторонами 148, 144 и 83
Найти высоту треугольника со сторонами 108, 86 и 82
Найти высоту треугольника со сторонами 149, 139 и 117
Найти высоту треугольника со сторонами 132, 109 и 83
Найти высоту треугольника со сторонами 144, 79 и 76
Найти высоту треугольника со сторонами 148, 144 и 83
Найти высоту треугольника со сторонами 108, 86 и 82
Найти высоту треугольника со сторонами 149, 139 и 117