Рассчитать высоту треугольника со сторонами 146, 93 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 93 + 90}{2}} \normalsize = 164.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-93)(164.5-90)}}{93}\normalsize = 86.5858689}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-93)(164.5-90)}}{146}\normalsize = 55.1540124}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-93)(164.5-90)}}{90}\normalsize = 89.4720646}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 93 и 90 равна 86.5858689
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 93 и 90 равна 55.1540124
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 93 и 90 равна 89.4720646
Ссылка на результат
?n1=146&n2=93&n3=90
Найти высоту треугольника со сторонами 93, 86 и 21
Найти высоту треугольника со сторонами 123, 116 и 12
Найти высоту треугольника со сторонами 102, 70 и 45
Найти высоту треугольника со сторонами 103, 103 и 8
Найти высоту треугольника со сторонами 142, 126 и 67
Найти высоту треугольника со сторонами 67, 54 и 54
Найти высоту треугольника со сторонами 123, 116 и 12
Найти высоту треугольника со сторонами 102, 70 и 45
Найти высоту треугольника со сторонами 103, 103 и 8
Найти высоту треугольника со сторонами 142, 126 и 67
Найти высоту треугольника со сторонами 67, 54 и 54