Рассчитать высоту треугольника со сторонами 146, 95 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 95 + 54}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-95)(147.5-54)}}{95}\normalsize = 21.9398416}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-95)(147.5-54)}}{146}\normalsize = 14.2759243}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-95)(147.5-54)}}{54}\normalsize = 38.5978694}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 95 и 54 равна 21.9398416
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 95 и 54 равна 14.2759243
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 95 и 54 равна 38.5978694
Ссылка на результат
?n1=146&n2=95&n3=54
Найти высоту треугольника со сторонами 128, 94 и 51
Найти высоту треугольника со сторонами 125, 99 и 91
Найти высоту треугольника со сторонами 76, 65 и 50
Найти высоту треугольника со сторонами 100, 92 и 10
Найти высоту треугольника со сторонами 136, 134 и 107
Найти высоту треугольника со сторонами 125, 84 и 66
Найти высоту треугольника со сторонами 125, 99 и 91
Найти высоту треугольника со сторонами 76, 65 и 50
Найти высоту треугольника со сторонами 100, 92 и 10
Найти высоту треугольника со сторонами 136, 134 и 107
Найти высоту треугольника со сторонами 125, 84 и 66