Рассчитать высоту треугольника со сторонами 146, 98 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 98 + 51}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-98)(147.5-51)}}{98}\normalsize = 20.9803059}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-98)(147.5-51)}}{146}\normalsize = 14.0826711}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-146)(147.5-98)(147.5-51)}}{51}\normalsize = 40.3150976}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 98 и 51 равна 20.9803059
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 98 и 51 равна 14.0826711
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 98 и 51 равна 40.3150976
Ссылка на результат
?n1=146&n2=98&n3=51
Найти высоту треугольника со сторонами 104, 79 и 54
Найти высоту треугольника со сторонами 127, 95 и 75
Найти высоту треугольника со сторонами 127, 105 и 27
Найти высоту треугольника со сторонами 148, 131 и 24
Найти высоту треугольника со сторонами 94, 75 и 52
Найти высоту треугольника со сторонами 148, 147 и 69
Найти высоту треугольника со сторонами 127, 95 и 75
Найти высоту треугольника со сторонами 127, 105 и 27
Найти высоту треугольника со сторонами 148, 131 и 24
Найти высоту треугольника со сторонами 94, 75 и 52
Найти высоту треугольника со сторонами 148, 147 и 69