Рассчитать высоту треугольника со сторонами 147, 102 и 68

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=147+102+682=158.5\color{#0000FF}{p = \Large{\frac{147 + 102 + 68}{2}} \normalsize = 158.5}
hb=2158.5(158.5147)(158.5102)(158.568)102=59.8607138\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-102)(158.5-68)}}{102}\normalsize = 59.8607138}
ha=2158.5(158.5147)(158.5102)(158.568)147=41.5360055\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-102)(158.5-68)}}{147}\normalsize = 41.5360055}
hc=2158.5(158.5147)(158.5102)(158.568)68=89.7910706\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-102)(158.5-68)}}{68}\normalsize = 89.7910706}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 102 и 68 равна 59.8607138
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 102 и 68 равна 41.5360055
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 102 и 68 равна 89.7910706
Ссылка на результат
?n1=147&n2=102&n3=68