Рассчитать высоту треугольника со сторонами 147, 102 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 102 + 68}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-102)(158.5-68)}}{102}\normalsize = 59.8607138}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-102)(158.5-68)}}{147}\normalsize = 41.5360055}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-102)(158.5-68)}}{68}\normalsize = 89.7910706}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 102 и 68 равна 59.8607138
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 102 и 68 равна 41.5360055
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 102 и 68 равна 89.7910706
Ссылка на результат
?n1=147&n2=102&n3=68
Найти высоту треугольника со сторонами 128, 116 и 80
Найти высоту треугольника со сторонами 131, 114 и 55
Найти высоту треугольника со сторонами 102, 86 и 72
Найти высоту треугольника со сторонами 99, 83 и 18
Найти высоту треугольника со сторонами 76, 58 и 35
Найти высоту треугольника со сторонами 130, 110 и 29
Найти высоту треугольника со сторонами 131, 114 и 55
Найти высоту треугольника со сторонами 102, 86 и 72
Найти высоту треугольника со сторонами 99, 83 и 18
Найти высоту треугольника со сторонами 76, 58 и 35
Найти высоту треугольника со сторонами 130, 110 и 29