Рассчитать высоту треугольника со сторонами 147, 104 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 104 + 95}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-147)(173-104)(173-95)}}{104}\normalsize = 94.6189727}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-147)(173-104)(173-95)}}{147}\normalsize = 66.941314}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-147)(173-104)(173-95)}}{95}\normalsize = 103.582875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 104 и 95 равна 94.6189727
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 104 и 95 равна 66.941314
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 104 и 95 равна 103.582875
Ссылка на результат
?n1=147&n2=104&n3=95
Найти высоту треугольника со сторонами 134, 118 и 88
Найти высоту треугольника со сторонами 103, 91 и 70
Найти высоту треугольника со сторонами 81, 64 и 30
Найти высоту треугольника со сторонами 143, 107 и 104
Найти высоту треугольника со сторонами 70, 56 и 53
Найти высоту треугольника со сторонами 79, 61 и 58
Найти высоту треугольника со сторонами 103, 91 и 70
Найти высоту треугольника со сторонами 81, 64 и 30
Найти высоту треугольника со сторонами 143, 107 и 104
Найти высоту треугольника со сторонами 70, 56 и 53
Найти высоту треугольника со сторонами 79, 61 и 58