Рассчитать высоту треугольника со сторонами 147, 105 и 65

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 105 + 65}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-105)(158.5-65)}}{105}\normalsize = 57.5157711}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-105)(158.5-65)}}{147}\normalsize = 41.0826936}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-105)(158.5-65)}}{65}\normalsize = 92.9100917}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 105 и 65 равна 57.5157711
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 105 и 65 равна 41.0826936
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 105 и 65 равна 92.9100917
Ссылка на результат
?n1=147&n2=105&n3=65