Рассчитать высоту треугольника со сторонами 147, 109 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 109 + 61}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-109)(158.5-61)}}{109}\normalsize = 54.4216818}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-109)(158.5-61)}}{147}\normalsize = 40.3534919}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-147)(158.5-109)(158.5-61)}}{61}\normalsize = 97.2453002}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 109 и 61 равна 54.4216818
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 109 и 61 равна 40.3534919
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 109 и 61 равна 97.2453002
Ссылка на результат
?n1=147&n2=109&n3=61
Найти высоту треугольника со сторонами 143, 121 и 28
Найти высоту треугольника со сторонами 149, 129 и 92
Найти высоту треугольника со сторонами 143, 142 и 14
Найти высоту треугольника со сторонами 129, 74 и 59
Найти высоту треугольника со сторонами 147, 138 и 124
Найти высоту треугольника со сторонами 137, 96 и 65
Найти высоту треугольника со сторонами 149, 129 и 92
Найти высоту треугольника со сторонами 143, 142 и 14
Найти высоту треугольника со сторонами 129, 74 и 59
Найти высоту треугольника со сторонами 147, 138 и 124
Найти высоту треугольника со сторонами 137, 96 и 65