Рассчитать высоту треугольника со сторонами 147, 110 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 110 + 82}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-147)(169.5-110)(169.5-82)}}{110}\normalsize = 81.0169576}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-147)(169.5-110)(169.5-82)}}{147}\normalsize = 60.6249343}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-147)(169.5-110)(169.5-82)}}{82}\normalsize = 108.681285}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 110 и 82 равна 81.0169576
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 110 и 82 равна 60.6249343
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 110 и 82 равна 108.681285
Ссылка на результат
?n1=147&n2=110&n3=82
Найти высоту треугольника со сторонами 81, 78 и 52
Найти высоту треугольника со сторонами 141, 129 и 77
Найти высоту треугольника со сторонами 130, 115 и 68
Найти высоту треугольника со сторонами 88, 67 и 39
Найти высоту треугольника со сторонами 140, 130 и 67
Найти высоту треугольника со сторонами 149, 110 и 88
Найти высоту треугольника со сторонами 141, 129 и 77
Найти высоту треугольника со сторонами 130, 115 и 68
Найти высоту треугольника со сторонами 88, 67 и 39
Найти высоту треугольника со сторонами 140, 130 и 67
Найти высоту треугольника со сторонами 149, 110 и 88