Рассчитать высоту треугольника со сторонами 147, 110 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 110 + 83}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-147)(170-110)(170-83)}}{110}\normalsize = 82.1411806}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-147)(170-110)(170-83)}}{147}\normalsize = 61.4661896}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-147)(170-110)(170-83)}}{83}\normalsize = 108.861806}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 110 и 83 равна 82.1411806
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 110 и 83 равна 61.4661896
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 110 и 83 равна 108.861806
Ссылка на результат
?n1=147&n2=110&n3=83
Найти высоту треугольника со сторонами 85, 64 и 55
Найти высоту треугольника со сторонами 137, 127 и 79
Найти высоту треугольника со сторонами 124, 79 и 76
Найти высоту треугольника со сторонами 137, 103 и 87
Найти высоту треугольника со сторонами 145, 136 и 64
Найти высоту треугольника со сторонами 129, 112 и 96
Найти высоту треугольника со сторонами 137, 127 и 79
Найти высоту треугольника со сторонами 124, 79 и 76
Найти высоту треугольника со сторонами 137, 103 и 87
Найти высоту треугольника со сторонами 145, 136 и 64
Найти высоту треугольника со сторонами 129, 112 и 96