Рассчитать высоту треугольника со сторонами 147, 119 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 119 + 42}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-147)(154-119)(154-42)}}{119}\normalsize = 34.5489974}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-147)(154-119)(154-42)}}{147}\normalsize = 27.968236}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-147)(154-119)(154-42)}}{42}\normalsize = 97.8888258}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 119 и 42 равна 34.5489974
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 119 и 42 равна 27.968236
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 119 и 42 равна 97.8888258
Ссылка на результат
?n1=147&n2=119&n3=42
Найти высоту треугольника со сторонами 70, 48 и 35
Найти высоту треугольника со сторонами 122, 113 и 59
Найти высоту треугольника со сторонами 104, 68 и 49
Найти высоту треугольника со сторонами 74, 60 и 53
Найти высоту треугольника со сторонами 130, 94 и 57
Найти высоту треугольника со сторонами 145, 123 и 33
Найти высоту треугольника со сторонами 122, 113 и 59
Найти высоту треугольника со сторонами 104, 68 и 49
Найти высоту треугольника со сторонами 74, 60 и 53
Найти высоту треугольника со сторонами 130, 94 и 57
Найти высоту треугольника со сторонами 145, 123 и 33