Рассчитать высоту треугольника со сторонами 147, 125 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 125 + 33}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-125)(152.5-33)}}{125}\normalsize = 26.5635766}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-125)(152.5-33)}}{147}\normalsize = 22.5880753}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-125)(152.5-33)}}{33}\normalsize = 100.619608}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 125 и 33 равна 26.5635766
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 125 и 33 равна 22.5880753
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 125 и 33 равна 100.619608
Ссылка на результат
?n1=147&n2=125&n3=33
Найти высоту треугольника со сторонами 135, 123 и 27
Найти высоту треугольника со сторонами 112, 92 и 69
Найти высоту треугольника со сторонами 78, 78 и 42
Найти высоту треугольника со сторонами 108, 88 и 21
Найти высоту треугольника со сторонами 97, 83 и 80
Найти высоту треугольника со сторонами 113, 112 и 88
Найти высоту треугольника со сторонами 112, 92 и 69
Найти высоту треугольника со сторонами 78, 78 и 42
Найти высоту треугольника со сторонами 108, 88 и 21
Найти высоту треугольника со сторонами 97, 83 и 80
Найти высоту треугольника со сторонами 113, 112 и 88