Рассчитать высоту треугольника со сторонами 147, 126 и 117
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 126 + 117}{2}} \normalsize = 195}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{195(195-147)(195-126)(195-117)}}{126}\normalsize = 112.659864}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{195(195-147)(195-126)(195-117)}}{147}\normalsize = 96.5655975}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{195(195-147)(195-126)(195-117)}}{117}\normalsize = 121.326007}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 126 и 117 равна 112.659864
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 126 и 117 равна 96.5655975
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 126 и 117 равна 121.326007
Ссылка на результат
?n1=147&n2=126&n3=117
Найти высоту треугольника со сторонами 71, 61 и 30
Найти высоту треугольника со сторонами 135, 112 и 59
Найти высоту треугольника со сторонами 150, 127 и 32
Найти высоту треугольника со сторонами 141, 108 и 99
Найти высоту треугольника со сторонами 139, 137 и 81
Найти высоту треугольника со сторонами 65, 50 и 18
Найти высоту треугольника со сторонами 135, 112 и 59
Найти высоту треугольника со сторонами 150, 127 и 32
Найти высоту треугольника со сторонами 141, 108 и 99
Найти высоту треугольника со сторонами 139, 137 и 81
Найти высоту треугольника со сторонами 65, 50 и 18