Рассчитать высоту треугольника со сторонами 147, 129 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 129 + 54}{2}} \normalsize = 165}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165(165-147)(165-129)(165-54)}}{129}\normalsize = 53.4110665}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165(165-147)(165-129)(165-54)}}{147}\normalsize = 46.8709359}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165(165-147)(165-129)(165-54)}}{54}\normalsize = 127.593103}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 129 и 54 равна 53.4110665
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 129 и 54 равна 46.8709359
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 129 и 54 равна 127.593103
Ссылка на результат
?n1=147&n2=129&n3=54
Найти высоту треугольника со сторонами 99, 93 и 83
Найти высоту треугольника со сторонами 128, 126 и 117
Найти высоту треугольника со сторонами 143, 96 и 51
Найти высоту треугольника со сторонами 32, 30 и 16
Найти высоту треугольника со сторонами 112, 109 и 13
Найти высоту треугольника со сторонами 128, 96 и 75
Найти высоту треугольника со сторонами 128, 126 и 117
Найти высоту треугольника со сторонами 143, 96 и 51
Найти высоту треугольника со сторонами 32, 30 и 16
Найти высоту треугольника со сторонами 112, 109 и 13
Найти высоту треугольника со сторонами 128, 96 и 75