Рассчитать высоту треугольника со сторонами 147, 130 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 130 + 68}{2}} \normalsize = 172.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172.5(172.5-147)(172.5-130)(172.5-68)}}{130}\normalsize = 67.9992141}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172.5(172.5-147)(172.5-130)(172.5-68)}}{147}\normalsize = 60.1353594}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172.5(172.5-147)(172.5-130)(172.5-68)}}{68}\normalsize = 129.998498}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 130 и 68 равна 67.9992141
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 130 и 68 равна 60.1353594
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 130 и 68 равна 129.998498
Ссылка на результат
?n1=147&n2=130&n3=68
Найти высоту треугольника со сторонами 142, 84 и 77
Найти высоту треугольника со сторонами 84, 76 и 13
Найти высоту треугольника со сторонами 141, 118 и 100
Найти высоту треугольника со сторонами 92, 80 и 47
Найти высоту треугольника со сторонами 77, 71 и 53
Найти высоту треугольника со сторонами 44, 37 и 9
Найти высоту треугольника со сторонами 84, 76 и 13
Найти высоту треугольника со сторонами 141, 118 и 100
Найти высоту треугольника со сторонами 92, 80 и 47
Найти высоту треугольника со сторонами 77, 71 и 53
Найти высоту треугольника со сторонами 44, 37 и 9