Рассчитать высоту треугольника со сторонами 147, 131 и 99

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 131 + 99}{2}} \normalsize = 188.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{188.5(188.5-147)(188.5-131)(188.5-99)}}{131}\normalsize = 96.8687879}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{188.5(188.5-147)(188.5-131)(188.5-99)}}{147}\normalsize = 86.3252464}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{188.5(188.5-147)(188.5-131)(188.5-99)}}{99}\normalsize = 128.179911}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 131 и 99 равна 96.8687879
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 131 и 99 равна 86.3252464
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 131 и 99 равна 128.179911
Ссылка на результат
?n1=147&n2=131&n3=99