Рассчитать высоту треугольника со сторонами 147, 133 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 133 + 24}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-147)(152-133)(152-24)}}{133}\normalsize = 20.4440501}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-147)(152-133)(152-24)}}{147}\normalsize = 18.4969977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-147)(152-133)(152-24)}}{24}\normalsize = 113.294111}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 133 и 24 равна 20.4440501
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 133 и 24 равна 18.4969977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 133 и 24 равна 113.294111
Ссылка на результат
?n1=147&n2=133&n3=24
Найти высоту треугольника со сторонами 128, 123 и 119
Найти высоту треугольника со сторонами 81, 49 и 40
Найти высоту треугольника со сторонами 71, 52 и 25
Найти высоту треугольника со сторонами 125, 116 и 16
Найти высоту треугольника со сторонами 123, 121 и 36
Найти высоту треугольника со сторонами 142, 142 и 61
Найти высоту треугольника со сторонами 81, 49 и 40
Найти высоту треугольника со сторонами 71, 52 и 25
Найти высоту треугольника со сторонами 125, 116 и 16
Найти высоту треугольника со сторонами 123, 121 и 36
Найти высоту треугольника со сторонами 142, 142 и 61