Рассчитать высоту треугольника со сторонами 147, 134 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 134 + 14}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-147)(147.5-134)(147.5-14)}}{134}\normalsize = 5.44143852}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-147)(147.5-134)(147.5-14)}}{147}\normalsize = 4.96022287}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-147)(147.5-134)(147.5-14)}}{14}\normalsize = 52.0823401}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 134 и 14 равна 5.44143852
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 134 и 14 равна 4.96022287
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 134 и 14 равна 52.0823401
Ссылка на результат
?n1=147&n2=134&n3=14
Найти высоту треугольника со сторонами 149, 139 и 31
Найти высоту треугольника со сторонами 78, 66 и 53
Найти высоту треугольника со сторонами 118, 101 и 39
Найти высоту треугольника со сторонами 143, 105 и 81
Найти высоту треугольника со сторонами 71, 66 и 21
Найти высоту треугольника со сторонами 104, 82 и 41
Найти высоту треугольника со сторонами 78, 66 и 53
Найти высоту треугольника со сторонами 118, 101 и 39
Найти высоту треугольника со сторонами 143, 105 и 81
Найти высоту треугольника со сторонами 71, 66 и 21
Найти высоту треугольника со сторонами 104, 82 и 41