Рассчитать высоту треугольника со сторонами 147, 135 и 20

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 135 + 20}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-147)(151-135)(151-20)}}{135}\normalsize = 16.6690303}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-147)(151-135)(151-20)}}{147}\normalsize = 15.3082931}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-147)(151-135)(151-20)}}{20}\normalsize = 112.515954}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 135 и 20 равна 16.6690303
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 135 и 20 равна 15.3082931
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 135 и 20 равна 112.515954
Ссылка на результат
?n1=147&n2=135&n3=20