Рассчитать высоту треугольника со сторонами 147, 136 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 136 + 83}{2}} \normalsize = 183}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{183(183-147)(183-136)(183-83)}}{136}\normalsize = 81.8308027}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{183(183-147)(183-136)(183-83)}}{147}\normalsize = 75.7074093}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{183(183-147)(183-136)(183-83)}}{83}\normalsize = 134.084207}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 136 и 83 равна 81.8308027
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 136 и 83 равна 75.7074093
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 136 и 83 равна 134.084207
Ссылка на результат
?n1=147&n2=136&n3=83
Найти высоту треугольника со сторонами 114, 82 и 61
Найти высоту треугольника со сторонами 114, 105 и 52
Найти высоту треугольника со сторонами 90, 77 и 51
Найти высоту треугольника со сторонами 140, 112 и 62
Найти высоту треугольника со сторонами 109, 72 и 55
Найти высоту треугольника со сторонами 75, 75 и 45
Найти высоту треугольника со сторонами 114, 105 и 52
Найти высоту треугольника со сторонами 90, 77 и 51
Найти высоту треугольника со сторонами 140, 112 и 62
Найти высоту треугольника со сторонами 109, 72 и 55
Найти высоту треугольника со сторонами 75, 75 и 45