Рассчитать высоту треугольника со сторонами 147, 138 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 138 + 20}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-138)(152.5-20)}}{138}\normalsize = 18.3975129}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-138)(152.5-20)}}{147}\normalsize = 17.2711346}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-147)(152.5-138)(152.5-20)}}{20}\normalsize = 126.942839}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 138 и 20 равна 18.3975129
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 138 и 20 равна 17.2711346
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 138 и 20 равна 126.942839
Ссылка на результат
?n1=147&n2=138&n3=20
Найти высоту треугольника со сторонами 121, 118 и 57
Найти высоту треугольника со сторонами 136, 89 и 83
Найти высоту треугольника со сторонами 141, 87 и 73
Найти высоту треугольника со сторонами 135, 94 и 78
Найти высоту треугольника со сторонами 122, 85 и 47
Найти высоту треугольника со сторонами 150, 137 и 64
Найти высоту треугольника со сторонами 136, 89 и 83
Найти высоту треугольника со сторонами 141, 87 и 73
Найти высоту треугольника со сторонами 135, 94 и 78
Найти высоту треугольника со сторонами 122, 85 и 47
Найти высоту треугольника со сторонами 150, 137 и 64