Рассчитать высоту треугольника со сторонами 147, 139 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 139 + 17}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-147)(151.5-139)(151.5-17)}}{139}\normalsize = 15.4043691}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-147)(151.5-139)(151.5-17)}}{147}\normalsize = 14.5660361}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-147)(151.5-139)(151.5-17)}}{17}\normalsize = 125.953371}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 139 и 17 равна 15.4043691
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 139 и 17 равна 14.5660361
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 139 и 17 равна 125.953371
Ссылка на результат
?n1=147&n2=139&n3=17
Найти высоту треугольника со сторонами 148, 99 и 77
Найти высоту треугольника со сторонами 50, 43 и 8
Найти высоту треугольника со сторонами 146, 120 и 33
Найти высоту треугольника со сторонами 76, 58 и 30
Найти высоту треугольника со сторонами 139, 116 и 62
Найти высоту треугольника со сторонами 146, 132 и 79
Найти высоту треугольника со сторонами 50, 43 и 8
Найти высоту треугольника со сторонами 146, 120 и 33
Найти высоту треугольника со сторонами 76, 58 и 30
Найти высоту треугольника со сторонами 139, 116 и 62
Найти высоту треугольника со сторонами 146, 132 и 79