Рассчитать высоту треугольника со сторонами 147, 140 и 138

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 140 + 138}{2}} \normalsize = 212.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{212.5(212.5-147)(212.5-140)(212.5-138)}}{140}\normalsize = 123.865174}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{212.5(212.5-147)(212.5-140)(212.5-138)}}{147}\normalsize = 117.966832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{212.5(212.5-147)(212.5-140)(212.5-138)}}{138}\normalsize = 125.660321}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 140 и 138 равна 123.865174
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 140 и 138 равна 117.966832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 140 и 138 равна 125.660321
Ссылка на результат
?n1=147&n2=140&n3=138